If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25000=2p^2=+400p
We move all terms to the left:
25000-(2p^2)=0
a = -2; b = 0; c = +25000;
Δ = b2-4ac
Δ = 02-4·(-2)·25000
Δ = 200000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200000}=\sqrt{40000*5}=\sqrt{40000}*\sqrt{5}=200\sqrt{5}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-200\sqrt{5}}{2*-2}=\frac{0-200\sqrt{5}}{-4} =-\frac{200\sqrt{5}}{-4} =-\frac{50\sqrt{5}}{-1} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+200\sqrt{5}}{2*-2}=\frac{0+200\sqrt{5}}{-4} =\frac{200\sqrt{5}}{-4} =\frac{50\sqrt{5}}{-1} $
| x/12=6.5 | | 6=3(a+9) | | 40/10=2/x | | 0=16t^2+140 | | 1x+4=3x+3 | | 12=3(t+10) | | 12=3(t=10) | | 5x+11x=-85-7x | | 3x/10=180 | | -0.3t=1.5 | | 35(x+20)=1725 | | 11m−15=12m+13 | | 5x+11=-85–7x | | 2+48x=180 | | 40x-4=20 | | 8x-9=3x+8 | | 16k-5=13k | | 0.5(12x)–3x(6-2x)=-36 | | 3x-13=6x+5 | | (2x-5)(2x+8)=0 | | 7y+12+-2y+42=2(-3y+38) | | c/10=30/5 | | 7x-13=-3x+7 | | 7x-5=5x+15 | | 6y-4y=-17 | | 50x(2x-10)=1725 | | 49=-7(d-11) | | 9/p+8=6/10 | | x+.40=84 | | 4p-10+p+11=2(-6p+43) | | 7x-13=-3+7 | | 8=-2+5g |